

Préparer ma rentrée en Première spécialité mathématiques

Eté 2020

Introduction

En septembre, vous entrerez au lycée en première générale avec l'enseignement de spécialité mathématiques. Vous aurez 4h de mathématiques par semaine. Le programme repose sur l'ensemble des notions vues en seconde, les approfondit et en développe de nouvelles. Vous choisirez courant mars de poursuivre ou pas l'enseignement de spécialité en terminale à raison de 6h par semaine. Si vous faites le choix de ne pas le conserver, vous pourrez le remplacer par l'option « maths complémentaires » (3h par semaines).

Ce choix devra être soigneusement réfléchi en cohérence avec votre projet d'orientation.

Des bases solides en mathématiques sont indispensables pour réussir dans l'Enseignement Supérieur dans beaucoup de domaines scientifiques ou économiques. Tous les élèves qui ne suivront pas l'enseignement de spécialité mathématiques en Terminale, passeront une Epreuve Commune de Contrôle Continu (E3C) en fin d'année.

Votre professeur de mathématiques de première vous aidera à faire évoluer vos méthodes de travail pour acquérir plus d'autonomie et d'efficacité. Les exercices seront parfois plus abstraits; savoir s'imposer de comprendre et mémoriser les méthodes, de refaire les exercices chez soi après avoir assimilé le cours est une des clés de la réussite, à condition d'être particulièrement concentré et actif en classe.

Ce cahier a été élaboré par des professeurs du lycée Elie Faure de Lormont et du lycée Brémontier de Bordeaux. Il est fortement inspiré des travaux de l'IREM de Clermont Ferrand - Groupe Aurillac-Lycée et du livret de liaison du Lycée Louis Bascan (78).

Il s'agit d'un recueil de méthodes et outils portant sur l'ensemble du programme de seconde.

Il propose des exercices à traiter avant la rentrée pour envisager plus sereinement l'année de première, enseignement de spécialité en mathématiques.

Ce travail sera d'autant plus efficace si vous le faites avec sérieux et de manière autonome.

Votre professeur de mathématiques pourra vérifier dès la rentrée lors d'une évaluation diagnostique les contenus développés dans ce cahier.

Un livret de corrigés sera publié sur le site du lycée au cours de la dernière semaine du mois d'août.

Quelques conseils d'organisation:

- Echelonner votre travail sur une ou deux semaines (4 à 6 exercices par jour).
- S'assurer que l'on maîtrise le cours avant de faire les exercices en s'interrogeant au brouillon sur ce que l'on sait concernant le sujet abordé.
- Faire attention au soin et à la rédaction.
- Si vous ne réussissez pas à faire un exercice, n'abandonnez pas, allez rouvrir votre cours de seconde pour y retrouver un exercice du même type.
- ™ Les exercices signalés par des étoiles * demandent un peu plus de recherche.

Bon courage aux futurs spécialistes et bonnes vacances!

1 Symboles

Outils

Définition 1 : Les ensembles A et B sont deux sous ensembles de l'ensemble E si, et seulement si, tous les élèments de A et de B sont dans l'ensemble E.

On note : $A \subset E$ et $B \subset E$ et on lit « A est inclus dans E ».

Remarque : La notation est différente lorsqu'on s'intéresse à un élément x de cet ensemble : on emploie le symbole \in qui se lit appartient.

Si $x \in A$ alors $x \in E$.

Définition 2 : L'ensemble noté \overline{A} est l'ensemble de tous les éléments de l'ensemble E qui n'appartiennent pas à l'ensemble A, on l'apelle le **complémentaire de** A **dans l'ensemble** E et on lit « A barre ».

Soit x un élément de E, si $x \notin A$ alors $x \in \overline{A}$.

Définition 3 : $A \cup B$ est l'ensemble des éléments de E qui appartiennent à A ou à B ou au deux à la fois. On l'appelle la réunion des deux ensembles A et B et on lit « A union B ».

 $A \cap B$ est l'ensemble des éléments de E qui appartiennent à la fois à A et à B. On l'appelle l'intersection des deux ensembles A et B et on lit « A inter B ».

Soit x un élément de E, si $x \in A$ et $x \in B$ alors $x \in A \cap B$.

si $x \in A$ et $x \notin B$ alors $x \in A \cup B$.

si $x \in A$ et $x \in B$ alors $x \in A \cup B$.

Remarque: Si $A \cap B = \emptyset$, alors on dit que les deux ensembles A et B sont disjoints.

Exercice nº 1

Le tableau ci-dessous donne le nombre de chômeurs (en milliers) selon le sexe et l'âge en 2012

	Femmes (F)	Hommes (H)	Ensemble
15 ans ou plus (C)	1 361	1 451	2 812
15 - 24 ans (C_1)	297	361	658
$25 - 49 \text{ ans } (C_2)$	812	816	1 628
$50 - 64 \text{ ans } (C_3)$	250	272	522
$65 \text{ ans ou plus } (C_4)$	2	2	4

source : INSEE, enquête Emploi 2012

Champ: France métropolitaine, population des ménages, personnes de 15 ans ou plus (âge courant).

- 1. Combien d'éléments possède l'ensemble F?
- 2. Concrètement, dans cet exemple, l'ensemble C de tous les éléments étudiés est l'ensemble de tous les ... Combien d'éléments possède-t-il?
- **3.** $H \cap C_2$ est l'ensemble des Combien d'éléments cet ensemble possède-t-il?
- **4.** $F \cup C_3$ est l'ensemble des Combien d'éléments cet ensemble possède-t-il?
- 5. \overline{F} est l'ensemble des Combien d'éléments cet ensemble possède-t-il?
- **6.** $\overline{C_1}$ est l'ensemble des Combien d'éléments cet ensemble possède-t-il?

Exercice nº 2

Recopier et compléter les pointillés :

- 1. $3 \cdots \mathbb{N}$; $-3 \cdots \mathbb{N}$; $\mathbb{N} \cdots \mathbb{R}$; $\sqrt{5} \cdots \mathbb{Q}$.
- **2.** Soit x un nombre compris entre 1 et 2, mais différent de 2, alors $x \cdots [1; 2[$ et $[1; 2[\cdots \mathbb{R}$
- **3.** $[1; 13] \cap [0; 2] = \cdots$
- **4.** Les deux intervalles [1;3] et $[4;+\infty[$ sont

 $\textbf{5.} \ \, \text{L'ensemble de tous les nombres réels qui ne sont pas strictement supérieurs à 4 est l'intervalle }$

- **6.** Soit x un nombre réel. Si $x \notin [1; 3[$ alors $x \in \cdots$.
- 7. Le complémentaire de l'ensemble [1; 3 [dans $\mathbb R$ est donc
- 8. Le complémentaire de l'ensemble des réels x tels que x>1 est l'intervalle

2 Calcul numérique

Prérequis

- Règles de calculs sur les fractions et les puissances.
- Racine carrée d'un nombre réel positif et règles de calculs.

Outils

- Somme $\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$
- 🖙 les fractions doivent avoir le même dénominateur.
- $\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$
- On mulutiplie numérateurs et dénominateurs entre eux.
- Quotient

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$$

☞ diviser c'est multiplier par l'inverse.

Exercice no 3

Sans utiliser la calculatrice, écrire sous la forme $\frac{a}{b}$ avec $a \in \mathbb{Z}$ et $b \in \mathbb{N}$ le plus petit possible.

1.
$$D = \frac{1}{2} - \frac{1}{3} + \frac{1}{4}$$
;

2.
$$E = \frac{2}{3} - \frac{3}{4} + 3\left(\frac{4}{5} - \frac{5}{6}\right);$$
 3. $F = \frac{\frac{3}{2} - \frac{7}{5}}{\frac{2}{5} \times \frac{4}{3} + 1}.$

3.
$$F = \frac{\frac{3}{2} - \frac{7}{5}}{\frac{2}{5} \times \frac{4}{2} + 1}$$

Exercice no 4

Calculer sans calculatrice.

1.
$$A = \frac{3^{27} - 3^{29}}{3^{28}}$$

3.
$$C = \frac{3^{-6} \times 5^5}{(5^2)^3 \times 3^{-5}};$$

5.
$$E = \frac{3^{1505} + 3^{1505} + 3^{1505}}{3^{1506}}$$

2.
$$B = \frac{\left(2^5\right) \times 4^{-5}}{8}$$
;

4.
$$D = \frac{8^2 \times 9^{-5}}{3^{-11} \times 2^8};$$

Exemples - Opérations avec des radicaux

$$G = \sqrt{49}$$

$$H = \frac{\sqrt{14}}{\sqrt{56}}$$

$$I = \sqrt{48} + \sqrt{12}$$

$$G=\sqrt{7^2}$$

$$H = \sqrt{\frac{14}{56}}$$

$$I = \sqrt{3 \times 4^2} + \sqrt{3 \times 2^2}$$

$$G = 7$$

$$H = \sqrt{\frac{14}{56}}$$

$$I = 4\sqrt{3} + 2\sqrt{3}$$

$$H=\sqrt{\frac{1}{3}}$$

$$I = 6\sqrt{3}$$

$$H = \frac{\sqrt{1}}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

Exercice no 5

Sans utiliser la calculatrice, écrire sous la forme $a\sqrt{b}$ avec $a \in \mathbb{Z}$ et $b \in \mathbb{N}$ le plus petit possible.

1.
$$J = \sqrt{48}$$
;

3.
$$L = 5\sqrt{27} - 3\sqrt{48}$$
;

4.
$$M = \frac{\sqrt{81}}{\sqrt{242}} \times \frac{\sqrt{98}}{\sqrt{25}}$$

Mise en route

2. $K = \sqrt{36 + 64}$;

Utilisation de l'expression conjuguée

L'expression conjuguée de $3 + \sqrt{5}$ est $3 - \sqrt{5}$.

On utilise l'expression conjuguée pour écrire un quotient sans radical au dénominateur.

$$N = \frac{2}{3 + \sqrt{5}}$$

$$N = \frac{2}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}}$$

$$N = \frac{2 \times \left(3 - \sqrt{5}\right)}{14}$$

$$N = \frac{2 \times \left(3 - \sqrt{5}\right)}{\left(3 + \sqrt{5}\right)\left(3 - \sqrt{5}\right)}$$

$$N = \frac{2 \times \left(3 - \sqrt{5}\right)}{2 \times 7}$$

$$N = \frac{2 \times \left(3 - \sqrt{5}\right)}{3^2 + \sqrt{5}^2}$$

$$N = \frac{3 - \sqrt{5}}{7}$$

Exercice nº 6

Ecrire sans radical au dénominateur et simplifier les expressions suivantes.

1.
$$A = \frac{3}{\sqrt{5}+1}$$
;

3.
$$C = \frac{1+\sqrt{5}}{3-\sqrt{5}};$$

4.
$$D = \frac{6 - \sqrt{2}}{4 - \sqrt{2}}$$
.

2.
$$B = \frac{-2}{\sqrt{7}-2}$$
;

Exercice nº 7

Soit f la fonction définie sur $\mathbb{R} \setminus \{-1\}$ par $f(x) = 2x - 3 + \frac{1}{x+1}$.

- 1. Montrer que, pour tout $x \neq -1$, on a $f(x) = \frac{2x^2 x 2}{x + 1}$.
- ${\bf 2.}\,$ Effectuer les calculs d'image suivants.

On donnera le résultat sous la forme la plus simple possible.

a.
$$f\left(\frac{2}{3}\right)$$
;

b.
$$f\left(\sqrt{5}\right)$$
;

c.
$$f(\sqrt{3}-1)$$
.

Exercice $n^o 8$

- * Les deux questions de cet exercice sont indépendantes.
- 1. Le nombre $\phi = \frac{1+\sqrt{5}}{2}$ est appelé le **nombre d'or**. Montrer que $\phi^2 \phi 1 = 0$.
- **2.** Montrer que, pour tout n de \mathbb{N} , $\frac{1}{\sqrt{n} + \sqrt{n+1}} = \sqrt{n+1} \sqrt{n}$.

Exercice nº 9

* Démontrer que pour tout entier naturel n, on a $2^n + 2^n = 2^{n+1}$.

Calcul littéral 3

~~~~~

Prérequis

- Maîtriser les identités remarquables et les priorités de développements.
- Repérer ou mettre en évidence un facteur commun pour factoriser.
- ➡ Mettre en évidence une identité remarquable pour factoriser.
- Réduire des fractions au même dénominateur.

Outils

Identités remarquables

$$(a+b)^2 = a^2 + 2ab + b^2;$$

•
$$(a-b)^2 = a^2 - 2ab + b^2$$
;

•
$$(a+b)(a-b) = a^2 - b^2$$

Exercice no 10

Exemple guidé - Développer des expressions

Recopie et complète les pointillés.

$$A = 2(3x - 1)^2 - (5x + 3)(2 - 3x)$$

$$A = 2(\cdots x^2 - \cdots + 1) - (10x - \cdots + \cdots - \cdots)$$

$$A = 18x^2 - \dots + 1 - 10x + \dots - \dots + \dots \qquad \text{donc } A = \dots$$

En utilisant la même méthode, développe les expressions suivantes :

$$B = (2x - 9)(3 - 2x) + 5(2x + 1)^{2}$$

$$C = 4(x-6)^2 - 3(5x+3)(5x-3)$$

Exercice no 11

Exemple guidé - Factoriser des expressions

Recopie et complète les pointillés.

$$A = 6x + 3 + 4(2x+1)^2$$

$$A = \cdots (2x+1) + 4(2x+1)(\cdots)$$

$$A = (2x+1)(\cdots + 4(\cdots))$$

$$A = (2x+1)(\cdots + 8x + \cdots) \qquad \text{donc } A = (\cdots)(\cdots)$$

En utilisant la même méthode, factorise les expressions suivantes :

$$B = 2(5x-1)^2 + 10x - 2$$

$$B = 2(5x - 1)^{2} + 10x - 2 C = (x^{2} - 4) - (x + 2)^{2}$$

Exercice no 12

Exemple guidé - Factoriser des expressions

Recopie et complète les pointillés.

$$A = 36x^2 - (5x+1)^2$$

$$A = (\cdots)^2 - (5x+1)^2$$

$$A = ((6x) + (\cdots))((6x) - (\cdots))$$

$$A = (6x \cdots) (6x \cdots)$$
 donc $A = (\cdots) (\cdots)$

En utilisant la même méthode, factorise les expressions suivantes :

$$B = (4x - 3)^2 - 25x^2$$
 $C = 49 - (5x + 2)^2$

$$C = 49 - (5x + 2)^2$$

Exercice no 13

Exemple guidé - Ecrire sous forme d'une seule fraction.

Recopie et complète les pointillés. $A = 4 + \frac{3}{x+2}$

$$A = 4 + \frac{3}{x+2}$$

$$A = \frac{4 \times (\dots + \dots)}{x+2} + \frac{3}{x+2}$$

$$A = \frac{\dots + \dots}{x+2} + \frac{3}{x+2} \qquad \text{donc } A = \frac{\dots + \dots}{x+2}$$

donc
$$A = \frac{\cdots + \cdots}{x+2}$$

En utilisant la même méthode, écris sous la forme d'une seule fraction les expressions suivantes :

$$B = \frac{2x}{2x-1} - 5$$

$$B = \frac{2x}{3x - 1} - 5 \qquad C = \frac{4}{2x + 6} - \frac{3}{x - 5}$$

Exercice no 14

Soit x la largeur d'un rectangle. Elle est égale à sa longueur moins 7.

- 1. Exprime le périmètre de ce rectangle en fonction de x.
- **2.** Exprime l'aire de ce rectangle en fonction de x.
- **3.** Calcule son périmètre et son aire si x = 13cm.

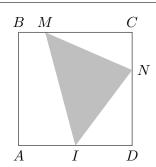
Exercice nº 15

Une piscine propose deux formules pour le paiement des entrées.

- Première formule : abonnement annuel de 20€, plus 2 € par entrée ;
- Deuxième formule : 5€ par entrée.
- 1. Donne dans chacun des cas le prix payé en fonction de x.
- 2. Calcule le prix payé suivant les deux formules pour 4 entrées et pour 25 entrées. Dans chaque cas, quelle est la formule la plus avantageuse?

Exercice no 16

ABCD est un carré de côté 6 cm. I est le milieu de [AD]. M est un point de [BC] et N un point de [CD] tels que BM = CN = x. Exprimer l'aire du triangle IMN en fonction de x.



4 Fonctions

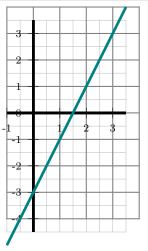
6

Prérequis

- ➡ Notions de fonction, d'image, d'antécédent.
- Résolution d'équations.

Exercice nº 17

On considère la fonction affine f définie sur \mathbb{R} par f(x) = 2x - 3. Sa représentation graphique est donnée ci-contre.

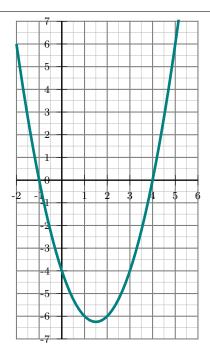


- 1. Déterminer graphiquement l'image de 2 par f.
- 2. Retrouver ce résultat par le calcul.
- 3. Déterminer graphiquement l'antécédent par f de -0, 5.
- 4. Retrouver ce résultat par le calcul.

Exercice nº 18

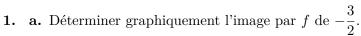
On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 - 6x - 4$. Sa représentation graphique est donnée ci-contre.

- 1. a. Déterminer graphiquement l'image par f de 5.
 - b. Retrouvre ce résultat par le calcul.
- **2.** Déterminer graphiquement les antécédents de 0 par f.
- 3. Résoudre graphiquement l'équation f(x) = -4.
- 4. Dresser le tableau de variation de la fonction f.
- **5.** Dresser le tableau de signes de la fonction f.



Exercice no 19

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^3 - x^2 - 6x$. Sa représentation graphique est donnée ci-contre.



b. Retrouver ce résultat par le calcul.

2. a. Développer
$$(x-3)(x+2)$$
.

b. En déduire l'expression factorisée de f.

c. Calculer les antécédents de 0 par f.

d. Retrouver graphiquement les résultats.

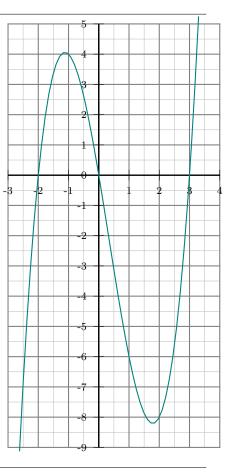
3. Dresser le tableau de variation de la fonction f par lecture graphique.

4. En utilisant la factorisation de f, dresser le tableau de signes de f.

5. a. Déterminer graphiquement les antécédents de -6 par f.

b. Factoriser $x^3 - x^2$ et -6x + 6.

c. * Résoudre algébriquement l'équation f(x) = -6.



10

Exercice no 20

On considère les deux algorithmes donnés ci-dessous pour lesquels on saisit au départ une valeur pour x.

Algorithme 1	Algorithme 2
$a \leftarrow x^2$ $b \leftarrow -6 \times x$ $c \leftarrow a + b + 8$ Afficher c	$a \leftarrow x - 3$ $b \leftarrow a^{2}$ $c \leftarrow b - 1$ Aficher c

 ${\bf 1.}\,$ Programmer ces deux algorithmes en Python. Les tester sur quelques nombres.

Vous pouvez utiliser l'application *repl.it*. Elle vous permet de programmer en Python en ligne (sans rien télécharger) et même sur votre téléphone.

- 2. Quelle conjecture pouvez-vous formuler? La démontrer.
- 3. Quel(s) nombre(s) doit-on saisir pour obtenir 48 comme résultat? (On attend une résolution algébrique.)

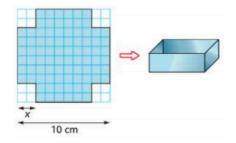
Exercice nº 21

On dispose d'un carré de métal de 10 cm de côté.

Pour fabriquer une boîte sans couvercle, on enlève à chaque coin un carré de côté x cm et on relève les bords pour obtenir un pavé droit.

- 1. Déterminer les valeurs de x pour lesquelles on peut fabriquer une boîte.
- **2.** Exprimer le volume $\mathcal{V}(x)$ de la boîte en fonction de x.
- 3. Utiliser la calculatrice pour déterminer le volume maximal et la valeur de x correspondante (on arrondira au dixième).

SPÉCIALITÉ- ETÉ 2020 PRÉPARER SA RENTRÉE EN 1EDS



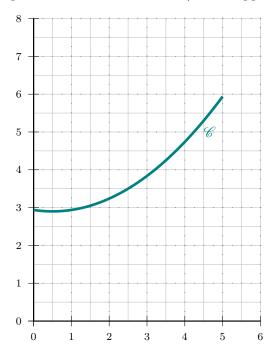
Exercice nº 22

Une entreprise fabrique des cartes à puces électronique à l'aide d'une machine.

La fonction f représente le coût d'utilisation de la machine en fonction de la quantité x de cartes produites, lorsque x est exprimé en centaines de cartes et f(x) en centaines d'euros.

La courbe $\mathscr C$ représentative de la fonction f est donnée ci-dessous.

- 1. Déterminer graphiquement le nombre de cartes à produire pour avoir un coût minimal d'utilisation de la machine. (Valeur approchée à la dizaine de cartes près)
- **2.** Chaque carte fabriquée est vendue $1,50 \in$. Exprimer, en fonction de x, la recette R(x) perçue pour la vente de x centaines de cartes.
- 3. Représenter graphiquement la fonction R ainsi définie.
- 4. Exprimer en fonction de x, le bénéfice B(x) réalisé pour la fabrication et la vente de x centaines de cartes.
- 5. On dira que l'entreprise réalise un bénéfice si B(x) > 0. En utilisant le graphique, indiquer la quantité minimale qui doit figurer sur le carnet de commandes de l'entreprise pour que celle-ci puisse réaliser un bénéfice. (Valeur approchée à la dizaine près)



5 Equations

Prérequis

- Savoir développer et factoriser une expression.
- Connaître et savoir utiliser les identités remarquables.
- Résolution d'une équation du premier degré et d'une équation produit nul.

Outils

A la fin de votre année de seconde, vous savez résoudre trois types d'équation.

 $lue{}$ Equation linéaire, (elle ne comporte aucune puissance de x, ni de fraction comportant des termes en x au dénominateur).

On se ramène à l'équation ax = b en développant, si besoin, chaque membre de l'équation et en isolant les différents termes en x d'un même côté de l'égalité.

- Equation produit nul.
- ullet Equation comportant des puissances de x (qu'il n'est pas possible « d'éliminer » par un simple développement).

Il faut tenter de factoriser l'expression afin de se ramener à la résolution d'une équation produit nul.

ullet Equation comportant des fractions rationnelles (C'est à dire des fractions avec des x au dénominateur).

Il conviendra tout d'abord de déterminer l'ensemble des valeurs interdites (celles qui donnent un ou des dénominateurs égaux à 0)

Puis, il faudra transformer l'écriture de manière à se ramener à l'égalité de deux fractions. On pourra alors utiliser l'égalité des produits en croix ou la mise au même dénominateur afin de se ramener à l'un des deux cas précédents.

Exemple - Résolution d'une équation linéaire

$$3(2x-3) + 3x = 5x - 2(5-9x)$$

Développer et se ramener à :

$$-14x = -1$$

Montrer alors que $S = \left\{ \frac{1}{14} \right\}$

Exemple - Résolution d'une équation produit

$$81x^2 - 16 = (9x - 4)(2x - 3)$$

Reconnaître une identité remarquable, factoriser et se ramener à :

$$-(9x-4)(7x+7)=0$$

Montrer alors que $S = \left\{ \frac{4}{9}; -1 \right\}$

Exemple - Résolution d'une équation rationnelle

$$x+1 = \frac{9}{x+1}$$

Déterminer les éventuelles valeurs interdites

En utilsant l'égalité des produits en croix, se ramener à :

$$(x+1)^2 = 9$$

Montrer alors que $S = \{2; -4\}$

Exercice nº 23

Résoudre dans $\mathbb R$ les équations suivantes :

1.
$$2x + 3 = -3x + 7$$
;

4.
$$(-x-4)(-x+7)=0$$
;

7.
$$\frac{5-8x}{x-2}=3$$
;

2.
$$-4x + 1 = 9$$
;

5.
$$9(-3x-1)(6x-36)=0$$
;

8.
$$\frac{-3x-1}{8-5x}=0.$$

3.
$$-x = x + 16$$
;

6.
$$-x(x+16)(2-5x)=0$$
;

Exercice nº 24

 \bigstar Résoudre dans $\mathbb R$ les équations suivantes :

1.
$$(5x-1)(x-9)-(x-9)(2x-1)=0$$
;

2.
$$(x-1)(2x-7) = 4x^2 - 28x + 49;$$

3.
$$x+1=\frac{9}{x+1}$$
;

4.
$$\frac{3x-1}{x-5} = \frac{3x-4}{x}$$
;

5.
$$\frac{x^2-3x}{(x-3)^2}=4$$
.

6 Inéquations et tableaux de signes

Prérequis

- Savoir développer et factoriser une expression.
- Règle des signes pour un produit ou un quotient.
- Étudier le signe d'une fonction affine.

Outils

Comme pour les équations, on traite différemment les expressions linéaires, les expressions factorisées (ou factorisables) et les expressions rationnelles.

Inéquation du premier degré

Exemple - Résolution d'une inéquation du premier degré

$$2x - 3 \leqslant 1$$

$$2x \leqslant 4$$

$$x \leqslant 2$$

donc
$$S =]-\infty; 2]$$

$$-5x - 4 \leqslant 6$$

$$-5x \leqslant 10$$

$$x \geqslant -2$$

donc
$$S = [-2; +\infty[$$

Exercice nº 25

Résoudre dans \mathbb{R} les inéquations suivantes :

1.
$$6x + 7 > 4x + 8$$
;

2.
$$x + 1 \ge 9x + 25$$
;

3.
$$-7 \le 4x + 9$$
.

Signe d'un produit

Exemple guidé - Etude du signe d'un produit

On veut étudier le signe dans \mathbb{R} du produit P(x) = (-2x - 6)(x - 5).

On cherche les valeurs qui annulent chaque facteur. On parle de racine d'une expression.

Racine de
$$-2x - 6$$
:

$$-2x - 6 = 0 \iff \cdots$$

$$-2x - 6 = 0 \iff \cdots$$

Racine de
$$x - 5$$
:

$$x - 5 = 0 \iff \cdots$$

On étudie le signe de chaque facteur :

On complète le tableau avec les signes qui conviennent.

x	$-\infty$			$+\infty$
signe de $-2x-6$		0		
signe de $x-5$			0	
$ \begin{array}{c} \text{signe} \\ \text{de } P(x) \end{array} $		0	0	

On peut alors en déduire les solutions des inéquations P(x) > 0 ou $P(x) \le 0$ ou tout autre inéquation.

Exercice nº 26

- 1. Etudier le signe de P(x) = (-3x + 12)(7 2x).
- **2.** En deduire les solutions de l'inéquation $P(X) \ge 0$.

Exercice nº 27

Résoudre dans $\mathbb R$ les inéquations suivantes :

1.
$$(x-8)(-1-10x) \le 0$$
;

2.
$$(3x+2)^2 - (3x+2)(5x+1) \le 0$$
.

Exercice nº 28

 \bigstar On considère deux nombres réels x et y dont la somme est 20.

On souhaite que leur produit P soit supérieur ou égal à 91.

- 1. Exprimer y en fonction de x.
- **2.** Démontrer que résoudre l'inéquation $P \ge 91$ revient à résoudre l'inéquation $(7-x)(13-x) \ge 0$.
- 3. Conclure.

Signe d'un quotient

Exemple guidé

On veut étudier le signe du quotient $Q(x) = \frac{3x+9}{x-2}$

Condition d'existence du quotient (autrement dit recherche de la valeur interdite.

$$Q(x)$$
 existe $\iff x-2\neq 0 \iff x\neq \cdots$

On a déjà la racine de x-2, il nous faut la racine de 3x+9.

$$3x + 9 = 0 \iff x = \cdots$$

On détermine le signe de 3x + 9 et de x - 2.

. .

On complète le tableau avec les signes qui conviennent.

x	$-\infty$			$+\infty$
signe de $3x + 9$		0		
signe de $x-2$			0	
signe de $Q(x)$		0		

On peut alors en déduire les solutions des inéquations Q(x) > 0 ou $Q(x) \leq 0$ ou tout autre inéquation.

Exercice nº 29

- 1. Etudier le signe de $Q(x) = \frac{-2x+3}{x+4}$.
- **2.** En déduire les solutions de l'inéquation $Q(x) \leq 0$.

Exercice nº 30

Résoudre dans $\mathbb R$ les inéquations suivantes :

1.
$$\frac{3}{2x-7} \leq 0$$
;

2.
$$5 + \frac{2}{x+3} \le 0$$
.

Exercice no 31

 \bigstar Résoudre dans $\mathbb R$ les inéquations suivantes :

1.
$$\frac{x^2 - 16}{9 - 4x^2} \geqslant 0$$
;

$$2. \ \frac{2x+3}{x+1} \leqslant \frac{x+1}{2x+3}.$$

Géométrie 7

Prérequis

- Connaître et savoir utiliser la formule de la distance entre deux points.
- De Connaître et savoir utiliser la formule donnant les coordonnées du milieu d'un segment.
- Connaître et savoir utiliser les définitions et les propriétés des figures usuelles.
- Somme de deux vecteurs, produit d'un vecteur par un réel, relation de Chasles.
- Coordonnées d'un vecteur dans un repère.
- Déterminant de deux vecteurs.
- Caractérisation de deux vecteurs colinéaires.

Géométrie vectorielle

Outils

- La translation qui transforme A en B est la translation de vecteur \overrightarrow{AB} .
- \bullet $\overrightarrow{AB} = \overrightarrow{CD}$ si et seulement si ABDC est un parallélogramme.
- Deux vecteurs égaux ont même direction, même sens et même norme.
- ightharpoonup Relation de Chasles : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.
- ▼ Deux vecteurs sont colinéaires si et seulement si ils ont même direction.
- ullet Deux vecteurs \vec{u} et \vec{v} sont colinéaires si et seulement si, il existe un réel k tel que $\vec{v} = k\vec{u}$.

Exercice no 32

Cet exercice est un questionnaire à choix multiples.

Pour chaque afirmation, trouver la (ou les) réponse(s) correcte(s).

1. REVI est un parallélogramme, alors :

a.
$$\overrightarrow{RE} = \overrightarrow{VI}$$

b.
$$\overrightarrow{ER} = \overrightarrow{VI}$$

b.
$$\overrightarrow{ER} = \overrightarrow{VI}$$
 c. $\overrightarrow{RV} = \overrightarrow{EI}$

$$\mathbf{d.} \ \overrightarrow{IR} = \overrightarrow{VE}$$

2. SION est un parallélogramme, alors :

a.
$$\overrightarrow{SO} = \overrightarrow{SI} + \overrightarrow{IO}$$

a.
$$\overrightarrow{SO} = \overrightarrow{SI} + \overrightarrow{IO}$$
 b. $\overrightarrow{SO} = \overrightarrow{OI} + \overrightarrow{NI}$ **c.** $\overrightarrow{SN} = \overrightarrow{SI} + \overrightarrow{ON}$

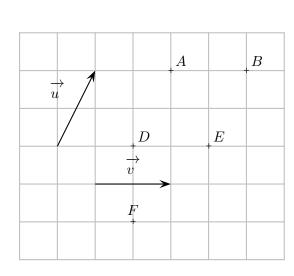
$$\mathbf{c.} \ \overrightarrow{SN} = \overrightarrow{SI} + \overrightarrow{ON}$$

d.
$$\overrightarrow{IN} = \overrightarrow{IS} + \overrightarrow{IO}$$

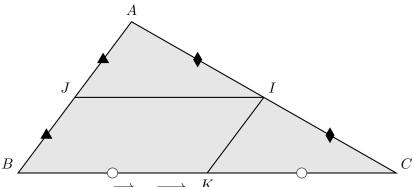
- 3. Dans la figure ci-contre, le vecteur \overrightarrow{u} est égal à :
 - a. \overrightarrow{CA}
- **b.** \overrightarrow{DA}
- \mathbf{c} , \overrightarrow{BE}
- 4. Dans la figure ci-contre, le vecteur $\overrightarrow{u} + \overrightarrow{v}$ est égal à :
 - a. \overrightarrow{EA}
- b. \overrightarrow{CB}
- c. \overrightarrow{FE}
- 5. Dans la figure ci-contre, le vecteur $\overrightarrow{u} \overrightarrow{v}$ est égal à :
 - a. \overrightarrow{EA}

- **b.** \overrightarrow{CB} **c.** \overrightarrow{FE} **d.** \overrightarrow{DB}
- **6.** Dans la figure ci-contre, le vecteur $\overrightarrow{u} + \frac{1}{2}\overrightarrow{v}$ est égal à :

- 7. dans la figure ci-dessous, les vecteurs \overrightarrow{IJ} et \overrightarrow{BC} sont



- a. colinéaires
- **b.** égaux
- c. opposés
- d. non colinéaires



- 8. Dans la figure ci-dessus, les vecteurs \overrightarrow{IJ} et \overrightarrow{KB} sont
 - a. colinéaires
- **b.** égaux
- c. opposés
- d. non colinéaires

- 9. Dans la figure ci-dessus, les vecteurs \overrightarrow{IK} et \overrightarrow{JA} sont
 - a. colinéaires
- **b.** égaux
- c. opposés
- d. non colinéaires

10. Dans la figure ci-dessus, quelles égalités sont vraies?

$$\mathbf{a.} \ \overrightarrow{JI} = \frac{1}{2}\overrightarrow{BC}$$

b.
$$\overrightarrow{CI} = \overrightarrow{CK} + \overrightarrow{IK}$$
 c. $\overrightarrow{BI} = \overrightarrow{BJ} + \overrightarrow{BK}$ **d.** $\overrightarrow{IK} = \overrightarrow{BJ}$

$$\mathbf{c.} \ \overrightarrow{BI} = \overrightarrow{BJ} + \overrightarrow{BK}$$

$$\mathbf{d.} \overrightarrow{IK} = \overrightarrow{BJ}$$

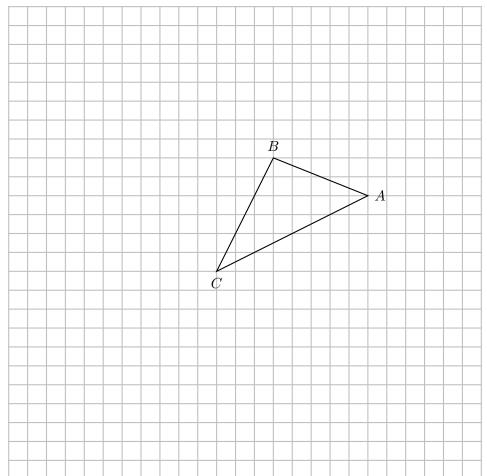
Exercice nº 33

On considère le triangle ABC, construire les points D, E et F tels que :

$$\overrightarrow{AE} = \overrightarrow{AB} + 2\overrightarrow{AC}$$

$$\overrightarrow{BD} = -\frac{1}{2}\overrightarrow{AC}$$

$$\overrightarrow{FB'} = \frac{3}{2}\overrightarrow{AC'} - \frac{1}{3}\overrightarrow{BC'}$$



Géométrie analytique

Outils

Pour deux points $A(x_A; y_A)$ et $B(x_B; y_B)$ dans un repère (O, \vec{i}, \vec{j}) ,

- Les coordonnées du milieu $I(x_I; y_I)$ sont $\begin{cases} x_I = \frac{x_A + x_B}{2} \\ y_I = \frac{y_A + y_B}{2} \end{cases}$;
- $\overrightarrow{AB} \stackrel{\longleftarrow}{\overrightarrow{AB}} \begin{pmatrix} x_B x_A \\ y_B y_A \end{pmatrix}$
- Si le repère est orthonormé, la distance $AB = \sqrt{(x_B x_A)^2 + (y_B y_A)^2}$.

Pour deux vecteurs $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ dans un repère $(0, \vec{i}, \vec{j})$,

- ◆ Deux vecteurs sont égaux si et seulement si ils ont les mêmes coordonnées.
- Le déterminant des vecteurs \vec{u} et \vec{v} est le réel $\det(\vec{u}; \vec{v}) = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy' x'y$
- Les vecteurs \vec{u} et \vec{v} sont colinéaires si et seulement si leur déterminant est nul.

Exercice no 34

On considère les vecteurs $\vec{u} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -2 \\ 5 \end{pmatrix}$ dans un repère $(0, \vec{i}, \vec{j})$.

Déterminer les coordonnées des vecteurs

1.
$$\vec{u} + \vec{v}$$
;

$$\mathbf{2.} \ -3\overset{\longrightarrow}{u}$$
;

3.
$$-3\overrightarrow{u} + 2\overrightarrow{v}$$

Exercice no 35

Dans un repère orthonormé $(0, \vec{i}, \vec{j})$, on donne les points A(-2; 3); $B(\frac{1}{2}; -1)$ et C(5; 1).

- **1.** Calculer la distance AB.
- **2.** Calculer les coordonnées du milieu E de [BC].
- 3. Calculer les coordonnées du point D symétrique de B par rapport à A.

Exercice no 36

Dans un repère orthonormé (O, \vec{i}, \vec{j}) , on donne les points A(1;3); B(-2;7) et C(-4;1). Calculer les coordonnées du point D tel que ABCD soit un parallélogramme.

Exercice no 37

Dans un repère $(0, \vec{i}, \vec{j})$, on donne les points A(-1;3); B(7;-1); C(5;0); D(4;-2) et E(0;4).

- 1. Démontrer que les points A, B et C sont alignés.
- **2.** Démontrer que les droites (AB) et (DE) sont parallèles.

SPÉCIALITÉ- ETÉ 2020

Rappel du cours

Dans un repère orthonormé, on considère :

- \checkmark les points $A(x_A; y_A)$ et $B(x_B; y_B)$;
- \checkmark les vecteurs $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$.

Recopie et complète les pointillés.

- L'axe des abscisses a pour équation . . . L'axe des ordonnées a pour équation . . .
- ✓ Une droite parallèle à l'axe des abscisses a une équation de la forme
 Une droite parallèle à l'axe des ordonnées a une équation de la forme
- Si $x_A \neq x_B$ alors le coefficient directeur de la droite (AB) est $m = \cdots$.
- ax + by + c = 0 avec $(a; b) \neq (0; 0)$ est une équation . . . de droite.
- Le vecteur $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ est $\underline{\mathbf{un}}$ vecteur directeur de d.
- $lue{}$ tout vecteur colinéaire à \vec{u} est un vecteur directeur de d.

Exercice nº 38

- * Le plan est rapporté à un repère orthonormé $\left(\mathbf{O},\vec{i},\vec{j}\right)$.
- 1. Tracer les droites d_1 et d_2 d'équation respectives y = -0, 5x 2 et y = 4x 20.
- **2.** a. Tracer la droite d_3 passant par le point A(-2;5) et de coefficient directeur $m=-\frac{3}{2}$.
 - **b.** Déterminer l'équation réduite de d_3 .
- **3.** a. Justifier que les droites d_1 et d_2 sont sécantes.
 - **b.** Calculer les coordonnées du point M d'intersection des droites d_1 et d_2 .
 - **c.** Le point M appartient-il à d_3 ? Si c'est le cas, on dit que les droites d_1 , d_2 et d_3 sont concourantes en M.

Exercice no 39

On se place dans un repère orthonorme $\left(\mathbf{O},\vec{i},\vec{j}\right)$.

- 1. Représenter d la droite d'équation 2x 3y + 7 = 0.
- 2. Donner l'ordonnée du point A de la droite d d'abscisse $-\frac{1}{2}$
- 3. Donner l'ordonnée du point B de la droite d d'ordonnée 1.

Exercice no 40

Dans le repère orthonormé $\left(\mathbf{O},\vec{i},\vec{j}\right)$, on considère les points A(2;4); B(-1;1) et C(5;10)

- 1. Déterminer une équation cartésienne de la droite (AB).
- 2. Déterminer une équation cartésienne de la droite Δ passant pas C et parallèle à (AB).

Exercice nº 41

D'après un exercice du manuel Le livre scolaire éditions 2019

- * Dans un repère orthonormé $(0, \vec{i}, \vec{j})$, on considère les points A(2; -1), B(1; 2) et M(x; y).
 - 1. Exprimer MO^2 et MA^2 en fonction de x et y.
 - 2. On rappelle que la médiatrice Δ de [OA] est l'ensemble des points M tels que MO = MA. Comme les distances sont positives, cela revient à $MO^2 = MA^2$. En déduire une relation entre x et y, cette égalité est une équation cartésienne de Δ .
 - 3. De même déterminer une équation cartésienne de la médiatrice d de [OB].

4. Calculer les coordonnées de C, point d'intersection des ces droites. Que peut-on dire de C dans le triangle OAB?

- **5.** a. Calculer les coordonnées de K, milieu [AB].
 - ${\bf b.}\,$ En déduire la nature du triangle OAB.

8 Probabilités

(a)

Prérequis

- ➡ Notion d'expérience aléatoire et de modélisation (notamment à l'aide d'arbres).
- ➡ Calculs de probabilités.
- ➡ Langage des événements.
- Réunion et intersection d'événements.
- Événement contraire.

Exercice nº 42

Cet exercice est un questionnaire à choix multiple. Pour chaque question, seule une réponse parmi celles proposées est exacte.

- 1. À Noël, Robin s'est fait offrir la trilogie des films « Batman » (trois films, sortis en 2005, 2008 et 2012). Il insère au hasard l'un des DVD dans son lecteur. Quel est la probabilité que ce soit le film le plus récent?
 - **a.** $\frac{1}{6}$

b. $\frac{1}{3}$

c. $\frac{1}{2}$

- **d.** $\frac{2}{3}$
- 2. Robin place les trois DVD côte à côte, mais au hasard, sur une étagère. Quelle est la probabilité que les films soient rangés dans l'ordre chronologique de gauche à droite?
 - **a.** $\frac{1}{6}$

b. $\frac{1}{3}$

c. $\frac{1}{2}$

- **d.** $\frac{2}{3}$
- 3. On tire au hasard deux cartes dans un jeu de 32. On note A l'événement : « Obtenir au moins un roi ». L'événement \overline{A} est :
 - a. « Obtenir un roi »

c. « Obtenir au moins une dame »

b. « N'obtenir aucun roi »

- d. « Obtenir deux rois »
- **4.** A et B sont deux événements issus d'une même expérience aléatoire. Sachant que p(B) = 0, 3; $p(A \cap B) = 0, 1$ et $p(A \cup B) = 0, 5$, on peut dire que la probabilité de l'évènement A est :
 - **a.** 0,1

b. 0.2

c. 0,3

- **d.** 0,4
- 5. On lance une pièce équilibrée. La probabilité d'obtenir « Pile » est :
 - **a.** 0.25

b. 0,5

c. 0,75

- **d.** 1
- 6. On lance 2 fois de suite une pièce équilibrée. La probabilité d'obtenir deux fois « Pile » est :
 - **a.** 0,25

b. 0,5

c. 0,75

- **d.** 2
- 7. On lance 8 fois de suite une pièce équilibrée. La probabilité d'obtenir huit fois « Pile » est :
 - **a.** $\frac{1}{8}$

b. $\frac{1}{4}$

- **c.** environ 0,001
- **d.** environ 0,004

Exercice no 43

On tire au hasard une carte dans un jeu de 32 cartes.

On considère les événements suivants :

- A: « Tirer un trèfle » et B: « Tirer un roi ».
- 1. Déterminer les probabilités des événements A et B.

SPÉCIALITÉ- ETÉ 2020 PRÉPARER SA RENTRÉE EN 1EDS

- 2. Définir par une phrase l'événement \overline{A} puis calculer sa probabilité.
- 3. Définir par une phrase les événements $A \cup B$ et $A \cap B$ puis calculer leur probabilité.

Exercice nº 44

★ Une roue de loterie est formée de cinq secteurs. La loi de probabilité est donnée par le tableau suivant :

Secteur	1	2	3	4	5
Probabilité	0,2	0,25	0,1	p_4	p_5

- 1. Déterminer p_4 et p_5 sachant que p_5 est le double de p_4 .
- 2. On lance cette roue puis on attend l'arrêt.
 - a. Quelle est la probabilité que la flèche indique un multiple de 2?
 - b. Quelle est la probabilité que la flèche indique un secteur avec un numéro inférieur ou égal à 3?

Exercice nº 45

Dans un lycée de 1 280 élèves, 300 élèves se font vacciner contre la grippe.

Pendant l'hiver, il y a une épidémie de grippe et 10% des élèves contractent la maladie.

De plus, 3% des élèves vaccinés ont la grippe.

Dans cet exercice, les résultats seront arrondis à 10^{-3} près.

1. Compléter le tableau

	Nombre d'élèves ayant eu la grippe	Nombre d'élèves n'ayant pas eu la grippe	Total
Nombre d'élèves vaccinés			
Nombre d'élèves non vaccinés			
Total			

- 2. On choisit au hasard un des élèves de ce lycée, tous les élèves ayant la même probabilité d'être choisi. Calculer la probabilité des événements suivants :
 - $A: \ll L'$ élève a été vacciné »;
 - $B: \ll L'élève a eu la grippe »;$
 - C: « L'élève a été vacciné et a eu la grippe ».
- 3. On choisit au hasard un des élèves non vaccinés. Calculer la probabilité que cet élève ait eu la grippe.

Exercice no 46

* Une urne contient 5 boules indiscernables au toucher : deux bleues « B » et trois rouges « R ».

On dispose également de deux sacs contenant des jetons : l'un est bleu et contient un jeton bleu « b » et trois jetons rouges « r » ; l'autre est rouge et contient deux jetons bleus « b » et deux jetons rouges « r » . On extrait une boule de l'urne puis on tire un jeton dans le sac qui est de la même couleur que la boule tirée.

- 1. Représenter cette expérience à l'aide d'un arbre pondéré.
- 2. Déterminer la probabilité de l'événement A : « La boule et le jeton sont de la même couleur ».